Simvastatin inhibits T-cell activation by selectively impairing the function of Ras superfamily GTPases.

نویسندگان

  • Raffaella Ghittoni
  • Laura Patrussi
  • Katja Pirozzi
  • Michela Pellegrini
  • Pietro E Lazzerini
  • P Leopoldo Capecchi
  • Franco Laghi Pasini
  • Cosima T Baldari
چکیده

Statins are widely used hypocholesterolemic drugs that inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, a rate-limiting enzyme of the mevalonate pathway whose biosynthetic end product is cholesterol. In addition to lowering circulating cholesterol, statins perturb the composition of cell membranes, resulting in disruption of lipid rafts, which function as signaling platforms in immunoreceptor signaling. Furthermore, by inhibiting protein prenylation, a process also dependent on mevalonate, statins block membrane targeting and hence activity of small GTPases, which control multiple pathways triggered by these receptors. T-cell activation is crucially dependent on Ras, Rho and Rab GTPases. Furthermore TCR signaling is orchestrated at lipid rafts, identifying T-cells as potential cellular targets of statins. Here we report that simvastatin suppresses T-cell activation and proliferation as the result of its capacity to inhibit HMG-CoA reductase. T-cell treatment with simvastatin does not affect intracellular cholesterol levels or raft integrity nor, accordingly, the initial tyrosine phosphorylation-dependent cascade. Conversely, inhibition of protein prenylation by simvastatin results in a dramatic impairment in the pathways regulated by small GTPases, including the Ras/MAP kinase pathway, the Rac/stress kinase pathway, and the Rab-dependent pathway of receptor endocytosis. The results identify Ras superfamily GTPases as strategic molecular targets in T-cell immunosuppression by statins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rab11 in Disease Progression

Membrane/ protein trafficking in the secretory/ biosynthetic and endocytic pathways is mediated by vesicles. Vesicle trafficking in eukaryotes is regulated by a class of small monomeric GTPases the Rab protein family. Rab proteins represent the largest branch of the Ras superfamily GTPases, and have been concerned in a variety of intracellular vesicle trafficking and different intracellular sig...

متن کامل

Small GTPases.

Members of the protein superfamily of small guanosine triphosphatases, also known as small GTPases, small G-proteins, or the Ras superfamily, are involved in nearly every aspect of cell biology. Small GTPases are tightly regulated molecular switches that make binary on/off decisions through controlled loading of GTP (activation) and hydrolysis of GTP to GDP (inactivation). Small GTPases typical...

متن کامل

The Ras superfamily at a glance.

The Ras superfamily of small guanosine triphosphatases (GTPases) comprise over 150 human members (Table S1 in supplementary material), with evolutionarily conserved orthologs found in Drosophila, C. elegans, S. cerevisiae, S. pombe, Dictyostelium and plants (Colicelli, 2004). The Ras oncogene proteins are the founding members of this family, which is divided into five major branches on the basi...

متن کامل

Identification and differential expression dynamics of peach small GTPases encoding genes during fruit development and ripening

The function of monomeric GTPases of the RAS superfamily in fruit development and ripening has been partially characterized. Here the identification of peach (Prunus persica) small GTPases of the RAS superfamily expressed in fruit and the characterization of their expression profiles during fruit development are described. Extensive searches on expressed sequence tag (EST) databases led to the ...

متن کامل

RRP22 is a farnesylated, nucleolar, Ras-related protein with tumor suppressor potential.

Ras proteins are members of a superfamily of related small GTPases. Some members, such as Ras, are oncogenic. However, other members seem to serve as tumor suppressors, such as Rig and Noey2. We now identify and characterize a novel member of the Ras superfamily, RRP22. Like Ras, RRP22 can be posttranslationally modified by farnesyl. Unlike Ras, RRP22 inhibits cell growth and promotes caspase-i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 19 6  شماره 

صفحات  -

تاریخ انتشار 2005